APPENDIX A

BASELINE WATER QUALITY DATA

LIST OF TABLES

A-1.	Dissolved Oxygen Determinations
A-2.	Results of Biochemical Oxygen Demand (5 day) Analyses
A-3.	Results of Chemical Oxygen Demand Analyses
A-4.	Results of pH Analyses
A-5.	Results of Total Alkalinity Analyses
A-6.	Results of Hardness Analyses
A-7.	Results of Conductivity Analyses
A-8.	Results of Dissolved Solids Analyses
A-9.	Results of Suspended Solids Analyses
A-10.	Results of Turbidity Analyses
A-11.	Results of Color Analyses
A-12.	Results of Chloride Analyses
A-13.	Results of Oil and Grease Analyses
A-14.	Results of Total Kjeldahl-Nitrogen Analyses
A-15.	Results of Ammonia-Nitrogen Analyses
A-16.	Results of Nitrate-Nitrogen Analyses
A-17.	Results of Total Phosphorus Analyses
A-18.	Results of Total Coliform Bacteria Analyses
A-19.	Results of Fecal Coliform Bacteria Analyses
A-20.	Results of Fecal Streptococci Bacteria Analyses
A-21.	Results of Heavy Metals Analyses
Table A-1. Strawberry Creek

Dissolved Oxygen Determinations

<table>
<thead>
<tr>
<th>Station</th>
<th>5/27/87</th>
<th>6/19/87</th>
<th>7/22/87</th>
<th>8/19/87</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>09:30</td>
<td>09:30</td>
<td>09:30</td>
<td>09:15</td>
</tr>
<tr>
<td>1</td>
<td>11.0</td>
<td>12.0</td>
<td>13.0</td>
<td>14.0</td>
</tr>
<tr>
<td>***</td>
<td>12.4</td>
<td>15.4</td>
<td>13.9</td>
<td>11.4</td>
</tr>
<tr>
<td>****</td>
<td>112</td>
<td>142</td>
<td>131</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>1030</td>
<td>1000</td>
<td>0945</td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>15.8</td>
<td>16.0</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>11.0</td>
<td>12.0</td>
<td>10.9</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>120</td>
<td>109</td>
<td>113</td>
</tr>
<tr>
<td>3</td>
<td>1100</td>
<td>1100</td>
<td>1045</td>
<td>1015</td>
</tr>
<tr>
<td></td>
<td>14.5</td>
<td>14.2</td>
<td>16.5</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>12.4</td>
<td>9.0</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>122</td>
<td>116</td>
<td>91</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1230</td>
<td>1200</td>
<td>1130</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>13.0</td>
<td>13.8</td>
<td>14.0</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>11.0</td>
<td>9.8</td>
<td>10.0</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>94</td>
<td>96</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>1330</td>
<td>1245</td>
<td>1200</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>15.5</td>
<td>14.2</td>
<td>16.5</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>9.8</td>
<td>11.0</td>
<td>9.9</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>106</td>
<td>100</td>
<td>102</td>
</tr>
<tr>
<td>6</td>
<td>1130</td>
<td>1130</td>
<td>1100</td>
<td>1035</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>18.6</td>
<td>18.0</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>8.3</td>
<td>9.8</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>88</td>
<td>103</td>
<td>98</td>
</tr>
</tbody>
</table>

* Time
** Water Temperature (°C)
*** Dissolved Oxygen Concentration (mg/l)
**** Percent Saturation
Table A.2. Strawberry Creek
Results of Biochemical Oxygen Demand (5 day) Analyses (mg/l)

<table>
<thead>
<tr>
<th>Station</th>
<th>5/27/87</th>
<th>6/19/87</th>
<th>7/22/87</th>
<th>8/19/87</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>< 3.0</td>
<td>< 2.4</td>
<td>< 2.4</td>
<td>< 2.4</td>
<td>< 2.6</td>
</tr>
<tr>
<td>2</td>
<td>< 3.0</td>
<td>< 2.4</td>
<td>< 2.4</td>
<td>< 2.4</td>
<td>< 2.6</td>
</tr>
<tr>
<td>3</td>
<td>< 3.0</td>
<td>< 2.4</td>
<td>< 2.4</td>
<td>< 2.4</td>
<td>< 2.6</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>< 3.0</td>
<td>< 2.4</td>
<td>< 2.4</td>
<td>< 2.4</td>
<td>< 2.6</td>
</tr>
<tr>
<td>5</td>
<td>< 3.0</td>
<td>2.4</td>
<td>< 2.4</td>
<td>3.7</td>
<td>< 2.9</td>
</tr>
<tr>
<td>6</td>
<td>< 3.0</td>
<td>5.3</td>
<td>< 2.4</td>
<td>< 2.4</td>
<td>< 3.3</td>
</tr>
</tbody>
</table>
Table A-3. Strawberry Creek
Results of Chemical Oxygen Demand Analyses (mg/l)

<table>
<thead>
<tr>
<th>Station</th>
<th>5/27/87</th>
<th>6/19/87</th>
<th>7/22/87</th>
<th>8/19/87</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>< 5</td>
<td>13</td>
<td>8</td>
<td>< 5</td>
<td>< 8</td>
</tr>
<tr>
<td>2</td>
<td>< 5</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>< 7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>22</td>
<td>12</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>< 5</td>
<td>4</td>
<td>12</td>
<td>10</td>
<td>< 8</td>
</tr>
<tr>
<td>5</td>
<td>< 5</td>
<td>9</td>
<td>< 5</td>
<td>19</td>
<td>< 10</td>
</tr>
<tr>
<td>6</td>
<td>< 5</td>
<td>18</td>
<td>< 5</td>
<td>10</td>
<td>< 10</td>
</tr>
</tbody>
</table>
Table A-4. Strawberry Creek
Results of pH Analyses (std. units)

<table>
<thead>
<tr>
<th>Station</th>
<th>5/27/87</th>
<th>6/19/87</th>
<th>7/22/87</th>
<th>8/19/87</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8.0</td>
<td>8.1</td>
<td>8.2</td>
<td>8.2</td>
<td>8.1</td>
</tr>
<tr>
<td>2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.3</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>3</td>
<td>7.9</td>
<td>8.0</td>
<td>8.1</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8.3</td>
<td>8.2</td>
<td>8.1</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>5</td>
<td>8.1</td>
<td>8.2</td>
<td>8.2</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>6</td>
<td>7.7</td>
<td>7.8</td>
<td>7.8</td>
<td>7.7</td>
<td>7.8</td>
</tr>
<tr>
<td>Station</td>
<td>5/27/87</td>
<td>6/19/87</td>
<td>7/22/87</td>
<td>8/19/87</td>
<td>Mean</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>153</td>
<td>120</td>
<td>145</td>
<td>144</td>
<td>140</td>
</tr>
<tr>
<td>2</td>
<td>115</td>
<td>87</td>
<td>122</td>
<td>151</td>
<td>119</td>
</tr>
<tr>
<td>3</td>
<td>107</td>
<td>101</td>
<td>121</td>
<td>96</td>
<td>106</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>180</td>
<td>142</td>
<td>152</td>
<td>163</td>
<td>164</td>
</tr>
<tr>
<td>5</td>
<td>166</td>
<td>173</td>
<td>135</td>
<td>157</td>
<td>158</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>85</td>
<td>84</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>Station</td>
<td>8/19/87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>159</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station</td>
<td>5/22/87</td>
<td>6/29/87</td>
<td>7/22/87</td>
<td>8/12/87</td>
<td>Mean</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>442</td>
<td>286</td>
<td>412</td>
<td>390</td>
<td>382</td>
</tr>
<tr>
<td>2</td>
<td>374</td>
<td>242</td>
<td>390</td>
<td>442</td>
<td>362</td>
</tr>
<tr>
<td>3</td>
<td>350</td>
<td>288</td>
<td>392</td>
<td>276</td>
<td>326</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>460</td>
<td>412</td>
<td>366</td>
<td>405</td>
<td>411</td>
</tr>
<tr>
<td>5</td>
<td>454</td>
<td>438</td>
<td>344</td>
<td>416</td>
<td>413</td>
</tr>
<tr>
<td>6</td>
<td>270</td>
<td>226</td>
<td>222</td>
<td>236</td>
<td>238</td>
</tr>
<tr>
<td>Station</td>
<td>5/27/87</td>
<td>6/19/87</td>
<td>7/23/87</td>
<td>8/19/87</td>
<td>Mean</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>280</td>
<td>207</td>
<td>258</td>
<td>264</td>
<td>252</td>
</tr>
<tr>
<td>2</td>
<td>210</td>
<td>157</td>
<td>238</td>
<td>275</td>
<td>220</td>
</tr>
<tr>
<td>3</td>
<td>203</td>
<td>188</td>
<td>225</td>
<td>174</td>
<td>198</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>252</td>
<td>271</td>
<td>221</td>
<td>247</td>
<td>248</td>
</tr>
<tr>
<td>5</td>
<td>260</td>
<td>282</td>
<td>212</td>
<td>245</td>
<td>250</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>164</td>
<td>139</td>
<td>148</td>
<td>150</td>
</tr>
<tr>
<td>Station</td>
<td>5/27/87</td>
<td>6/19/87</td>
<td>7/22/87</td>
<td>8/19/87</td>
<td>Mean</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.4</td>
<td>3.0</td>
<td>4.2</td>
<td>4.6</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>3.4</td>
<td>11.6</td>
<td>4.0</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>1.4</td>
<td>6.2</td>
<td>3.0</td>
<td>1.1</td>
<td>2.9</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.6</td>
<td>4.8</td>
<td>< 1.0</td>
<td>1.4</td>
<td>< 3.2</td>
</tr>
<tr>
<td>5</td>
<td>2.8</td>
<td>7.8</td>
<td>12.2</td>
<td>12.3</td>
<td>8.8</td>
</tr>
<tr>
<td>6</td>
<td>4.6</td>
<td>8.4</td>
<td>4.2</td>
<td>34.0</td>
<td>12.8</td>
</tr>
</tbody>
</table>
Table A-10. Strawberry Creek
Results of Turbidity Analyses (NTU)

<table>
<thead>
<tr>
<th>Station</th>
<th>5/27/87</th>
<th>6/19/87</th>
<th>7/22/87</th>
<th>8/19/87</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.4</td>
<td>2.0</td>
<td>2.9</td>
<td>3.5</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>2.5</td>
<td>3.2</td>
<td>4.4</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>2.1</td>
<td>2.4</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td>1.1</td>
<td>1.0</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>5</td>
<td>2.2</td>
<td>2.1</td>
<td>4.5</td>
<td>4.8</td>
<td>3.4</td>
</tr>
<tr>
<td>6</td>
<td>3.3</td>
<td>6.5</td>
<td>4.5</td>
<td>25.0</td>
<td>9.8</td>
</tr>
<tr>
<td>Station</td>
<td>5/27/87</td>
<td>6/19/87</td>
<td>7/22/87</td>
<td>8/19/87</td>
<td>Mean</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>20</td>
<td>16</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>10</td>
<td>20</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>20</td>
<td>25</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>Station</td>
<td>5/27/87</td>
<td>6/19/87</td>
<td>7/22/87</td>
<td>8/19/87</td>
<td>Mean</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11.2</td>
<td>9.0</td>
<td>23.9</td>
<td>21.0</td>
<td>16.3</td>
</tr>
<tr>
<td>2</td>
<td>26.0</td>
<td>22.0</td>
<td>33.0</td>
<td>34.0</td>
<td>28.8</td>
</tr>
<tr>
<td>3</td>
<td>23.0</td>
<td>13.0</td>
<td>35.0</td>
<td>18.0</td>
<td>23.5</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17.0</td>
<td>19.0</td>
<td>9.4</td>
<td>18.0</td>
<td>15.8</td>
</tr>
<tr>
<td>5</td>
<td>22.0</td>
<td>21.0</td>
<td>14.5</td>
<td>20.0</td>
<td>19.4</td>
</tr>
<tr>
<td>6</td>
<td>9.6</td>
<td>9.5</td>
<td>9.4</td>
<td>12.0</td>
<td>10.1</td>
</tr>
</tbody>
</table>
Table A-13. Strawberry Creek
Results of Oil and Grease Analyses (mg/l)

<table>
<thead>
<tr>
<th>Station</th>
<th>5/27/87</th>
<th>6/19/87</th>
<th>7/22/87</th>
<th>8/15/87</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>< 0.5</td>
<td>< 0.5</td>
<td>1.3</td>
<td>1.6</td>
<td>< 1.0</td>
</tr>
<tr>
<td>2</td>
<td>< 0.5</td>
<td>< 0.5</td>
<td>2.5</td>
<td>1.7</td>
<td>< 1.3</td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
<td>< 0.5</td>
<td>1.9</td>
<td>3.1</td>
<td>< 1.7</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.2</td>
<td>0.6</td>
<td>19.3</td>
<td>1.6</td>
<td>6.2</td>
</tr>
<tr>
<td>5</td>
<td>< 0.5</td>
<td>< 0.5</td>
<td>2.5</td>
<td>1.7</td>
<td>< 1.3</td>
</tr>
<tr>
<td>6</td>
<td>< 0.5</td>
<td>< 0.5</td>
<td>31.8</td>
<td>1.4</td>
<td>< 8.6</td>
</tr>
<tr>
<td>Station</td>
<td>5/27/87</td>
<td>6/19/87</td>
<td>7/22/87</td>
<td>8/19/87</td>
<td>Mean</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.21</td>
<td>0.74</td>
<td>0.08</td>
<td>0.08</td>
<td>0.28</td>
</tr>
<tr>
<td>2</td>
<td>0.17</td>
<td>0.36</td>
<td>0.79</td>
<td>0.19</td>
<td>0.38</td>
</tr>
<tr>
<td>3</td>
<td>0.28</td>
<td>0.82</td>
<td>0.14</td>
<td>0.11</td>
<td>0.34</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.13</td>
<td>0.20</td>
<td>0.45</td>
<td>0.14</td>
<td>0.23</td>
</tr>
<tr>
<td>5</td>
<td>0.53</td>
<td>0.60</td>
<td>0.44</td>
<td>0.32</td>
<td>0.47</td>
</tr>
<tr>
<td>6</td>
<td>0.86</td>
<td>1.00</td>
<td>0.42</td>
<td>0.31</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Table A-15. Strawberry Creek
Results of Ammonia-Nitrogen Analyses (mg/l)

<table>
<thead>
<tr>
<th>Station</th>
<th>5/27/87</th>
<th>6/19/87</th>
<th>7/22/87</th>
<th>8/19/87</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.04</td>
<td>< 0.02</td>
<td>0.05</td>
<td>0.05</td>
<td>< 0.04</td>
</tr>
<tr>
<td>2</td>
<td>0.07</td>
<td>< 0.02</td>
<td>0.09</td>
<td>0.07</td>
<td>< 0.06</td>
</tr>
<tr>
<td>3</td>
<td>0.09</td>
<td>0.28</td>
<td>0.09</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.03</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>5</td>
<td>0.31</td>
<td>0.20</td>
<td>0.09</td>
<td>0.09</td>
<td>0.17</td>
</tr>
<tr>
<td>6</td>
<td>0.26</td>
<td>0.12</td>
<td>0.42</td>
<td>0.08</td>
<td>0.22</td>
</tr>
<tr>
<td>Station</td>
<td>5/27/87</td>
<td>6/19/87</td>
<td>7/22/87</td>
<td>8/19/87</td>
<td>Mean</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.4</td>
<td>2.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>2.2</td>
<td>1.5</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>2.5</td>
<td>1.3</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.6</td>
<td>2.3</td>
<td>2.0</td>
<td>2.8</td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td>3.9</td>
<td>3.2</td>
<td>3.7</td>
<td>7.9</td>
<td>4.7</td>
</tr>
<tr>
<td>6</td>
<td>4.9</td>
<td>3.8</td>
<td>2.0</td>
<td>3.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Station</td>
<td>5/27/87</td>
<td>6/19/87</td>
<td>7/22/87</td>
<td>8/19/87</td>
<td>Mean</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>< 0.01</td>
<td>0.46</td>
<td>0.29</td>
<td>0.30</td>
<td>< 0.21</td>
</tr>
<tr>
<td>2</td>
<td>0.17</td>
<td>0.28</td>
<td>0.19</td>
<td>0.16</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>0.39</td>
<td>0.24</td>
<td>0.18</td>
<td>0.13</td>
<td>0.24</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.07</td>
<td>0.13</td>
<td>0.08</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>5</td>
<td>0.28</td>
<td>0.44</td>
<td>0.42</td>
<td>0.88</td>
<td>0.50</td>
</tr>
<tr>
<td>6</td>
<td>0.33</td>
<td>0.32</td>
<td>0.24</td>
<td>0.45</td>
<td>0.34</td>
</tr>
<tr>
<td>Station</td>
<td>5/27/87</td>
<td>6/19/87</td>
<td>7/22/87</td>
<td>8/19/87</td>
<td>Mean</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3,000</td>
<td>2,400</td>
<td>2,400</td>
<td>1,700</td>
<td>2,375</td>
</tr>
<tr>
<td>2</td>
<td>9,000</td>
<td>16,000</td>
<td>16,000</td>
<td>1,300</td>
<td>10,575</td>
</tr>
<tr>
<td>3</td>
<td>9,000</td>
<td>≥16,000</td>
<td>≥16,000</td>
<td>3,000</td>
<td>≥11,000</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2,400</td>
<td>9,000</td>
<td>700</td>
<td>16,000</td>
<td>7,025</td>
</tr>
<tr>
<td>5</td>
<td>1,300</td>
<td>≥16,000</td>
<td>≥16,000</td>
<td>≥16,000</td>
<td>≥12,325</td>
</tr>
<tr>
<td>6</td>
<td>≥16,000</td>
<td>≥16,000</td>
<td>≥16,000</td>
<td>≥160,000</td>
<td>≥52,000</td>
</tr>
</tbody>
</table>

Note: MPN method.
<table>
<thead>
<tr>
<th>Station</th>
<th>5/27/87</th>
<th>6/19/87</th>
<th>7/22/87</th>
<th>8/19/87</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>300</td>
<td>140</td>
<td>300</td>
<td>300</td>
<td>260</td>
</tr>
<tr>
<td>2</td>
<td>3,000</td>
<td>170</td>
<td>300</td>
<td>140</td>
<td>902</td>
</tr>
<tr>
<td>3</td>
<td>3,000</td>
<td>≥16,000</td>
<td>≥16,000</td>
<td>3,000</td>
<td>≥11,000</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>700</td>
<td>700</td>
<td>1,400</td>
<td>825</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>5,000</td>
<td>≥16,000</td>
<td>≥16,000</td>
<td>≥10,825</td>
</tr>
<tr>
<td>6</td>
<td>≥16,000</td>
<td>>16,000</td>
<td>≥16,000</td>
<td>90,000</td>
<td>≥34,500</td>
</tr>
</tbody>
</table>

Note: MPN method.
Table A-20. Strawberry Creek
Fecal Streptococci Bacteria (Number per 100 ml)

<table>
<thead>
<tr>
<th>Station</th>
<th>5/27/87</th>
<th>6/19/87</th>
<th>7/22/87</th>
<th>8/19/87</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3,000</td>
<td>800</td>
<td>500</td>
<td>800</td>
<td>1,275</td>
</tr>
<tr>
<td>2</td>
<td>1,700</td>
<td>16,000</td>
<td>≥16,000</td>
<td>1,300</td>
<td>≥8,750</td>
</tr>
<tr>
<td>3</td>
<td>>16,000</td>
<td>>16,000</td>
<td>5,000</td>
<td>1,100</td>
<td>>11,025</td>
</tr>
<tr>
<td>North Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>800</td>
<td>800</td>
<td>16,000</td>
<td>4,475</td>
</tr>
<tr>
<td>5</td>
<td>130</td>
<td>1,700</td>
<td>800</td>
<td>≥16,000</td>
<td>≥4,658</td>
</tr>
<tr>
<td>6</td>
<td>≥16,000</td>
<td>9,000</td>
<td>≥16,000</td>
<td>160,000</td>
<td>≥51,750</td>
</tr>
</tbody>
</table>

Note: MPN method.
Table A-21. Strawberry Creek

Results of Heavy Metals Analyses (ug/l)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>South Fork</th>
<th>North Fork</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#1 7/22 8/19</td>
<td>#2 7/22 8/19</td>
</tr>
<tr>
<td>Cadmium</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Chromium</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Copper</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Iron</td>
<td>50.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Lead</td>
<td>9.0</td>
<td><10.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>10.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Nickel</td>
<td>4.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

All Analyses in ug/l